

Anaerobic digestion 101

- Anaerobic digestion starts in the rumen (where the easy energy is extracted), continues in the pond.
- Methanogens are slow and sensitive process can suffer upset

 Cove comi robus 	ered anaerobic po mercial on-farm b st, suited to dilute	onds "a iogas o efflue	ppear capture nt).	to rep and	resent the use" in Au	e best ust. (lo	option fo w tech,	r
		0	5	10	15	20	25	30
		Wa	tor Added			Body	ing Added	_
	Manure		[As Excreted			_
	Classification	Liquid	Slum	·	Semi-Solid		Solid	$ \rightarrow $
	Handling Options	Pur	np	_	Scrape		Scrape and Stack	
	Biogas Production	R	ecommend	ed		Not Reco	Not Recommended	
	Digester Type	Covered Lagoon o	Comple Mix	le Pli Fic	ug ww			

Uptake in Australia

- Pigs; 1 engineered (complete mix) digester and 6 covered pond projects (7% Aust pork production ~ 180,000 SPU's) 2014 data
- Dairy; 0 covered anaerobic ponds.

Scott Birchall, Dairy Australia Consultant, Land, Water & Carbon – Murray region, March 2016

Differences between pigs and dairy

- 1) Amount of Volatile Solids (VS) produced as the feedstock.
 - 1 Standard Pig Unit (SPU) represents 90 kg VS/yr (an average size grower pig)
 - 100 sow, farrow to finish = 1260 SPU and ~110,000 kg VS/yr.
 - Typical dairy cow excretes 1200-1800 kg VS/lactation but only 10-15% collected (120-270 kg VS).
 - 1 dairy cow (grazing) equivalent to 1.3 3 SPU.

Scott Birchall, Dairy Australia Consultant, Land, Water & Carbon – Murray region, March 2016

A 14ML covered anaerobic lagoon at Bungowannah. A 6,000 sow 'breeder only' piggery 2012 = 4,000 to 9,000 cows (grazing herd)

> Scott Birchall, Dairy Australia Consultant, Land, Water & Carbon – Murray region March 2010

A 42ML covered anaerobic lagoon at Corowa. A 5,000 sow 'farrow to finish' piggery' 2012 = 20,000 to 45,000 cows (grazing herd)

Differences between pigs and dairy (cont.)

- Degradability of excreted VS greater for pigs compared to dairy (monogastric vs. ruminant, differing diets)
 - B_o is maximum methane producing capacity. Default given by IPCC:
 B_o pigs = 0.45 m³/kg VS

B_o dairy = 0.24 m³/kg VS

Scott Birchall, Dairy Australia Consultant, Land, Water & Carbon – Murray region, March 2016

Relevant ERF methods

- Destruction of methane generated from dairy manure in covered anaerobic ponds
- Destruction of methane from piggeries using engineered biodigesters
- Destruction of methane generated from manure in piggeries
- Destruction of methane generated from manure in piggeries 1.1

Common elements:

- covering ponds to prevent the release of methane (or diversion to engineered digester)
- · collecting the emitted methane, and
- combusting the methane to convert it to carbon dioxide and water.

Scott Birchall, Dairy Australia Consultant, Land, Water & Carbon – Murray region, March 2016

Requirements of methods

Data collection

period

every 5 years

quantity of methane emissions destroyed:

- Ponds comply with industry guidelines; pond depth > 2m (pig) or VSLR > 50 g/m³ (dairy)
- Only animal manure & normal waste feed & bedding may be digested

· Measurement subject to quality controls. For example, measurement of

field checked for accuracy within 2 months of end of reporting

re-calibrated at lesser of manufacturer's recommended interval or

Scott Birchall, Dairy Australia Consultant, Land, Water & Carbon -

Murray region, March 2016

instrument operates with an accuracy of +/- 5%

- Frequently sparking flare or monitoring of flaring system
- Record keeping; animal no's, time on yard, diet, etc

Baseline vs. measured emissions

- Estimate baseline if project did not occur (tonnes CO₂-e)
 Tiered approach to calculating VS entering pond (DGAS, PigBal)
- Calculate net abatement; measured quantity of methane emissions avoided minus emissions from operating the project
- Cannot claim a quantity of methane destroyed higher than baseline

Scott Birchall, Dairy Australia Consultant, Land, Water & Carbon – Murray region March 201

- Project costs & viability
- + ERF reverse auction min project size 2,000 t/y $\rm CO_2\text{-}e$ mitigated
- + 400 sow farrow to finish piggery (4000 SPU) may mitigate 2,000 t/y $\rm CO_2\text{-}e$
- At present, projects are not economically feasible under about 4-5,000 t/y CO_2 -e mitigated. However, this may reduce as smaller and cheaper equipment becomes available.
- 5,000 12,000 cow grazing herd may mitigate 4,000 t/y CO₂-e
- 800 1,500 cow fully intensive herd may mitigate 4,000 t/y CO₂-e

Under the ERF, projects are unlikely to be feasible for flaring methane only. Projects will have to generate electricity, CHP or tri-generation. Energy cost rises will dictate project uptake in the future.

Scott Birchall, Dairy Australia Consultant, Land, Water & Carbon – Murray region, March 2016

Scott Birchall, Dairy Australia Consultant, Land, Water & Carbon – Murray region March 201

How much potential energy?

- + 1 kg COD produces 0.25 kg CH_4 (or 0.35 m³ at STP)
- 1 kg CH₄ contains 50 MJ energy (~14 kWh-e)
- 1 cow excreting 5.4 kg COD/d (NZ data), 15% collected, 50% destroyed
 0.1 kg CH₄/cow.d
 - 1.4 kWh-e/cow.d (NOTE only 25-30% of that is potential electrical output, or ~0.35 kWh/cow.d = 0.015 kW/cow)
- Could be 2.4 kWh/cow.d or 0.1 kW/cow under TMR/freestall scenario
- · For comparison, approx. electrical energy required for:
 - Milk cooling (17 to 4°C, 20 L/d, COP 2.6) = 0.12 kWh/cow.d
 - Hot water (15 to 85°C, 2.3 L/d, COP 0.98) = 0.19 kWh/cow.d
- So energy budget looks positive, but need to consider system cost!

Scott Birchall, Dairy Australia Consultant, Land, Water & Carbon – Murray region, March 2016

Cost energy of energy produced?

- Scarce Australian data; feasibility study for 2200 cow freestall dairy; approx. \$800K (exc. pond earthworks and heat recovery) comprising:
 - \$310K cover (\$20/m²)
 - \$230K genset (typically allow >\$1500/kW)
 - \$100K engineering
 - ~\$400/cow
- Using USEPA AgSTAR cost at \$700/cow for 2000 freestall cows (2.4 kWh/cow.d), a 15 year lifespan and \$0.02/kWh O&M
 - \$0.05/kWh produced => warrants investigation

Scott Birchall, Dairy Australia Consultant, Land, Water & Carbon – Murray region March 2010

		400 cow herd, grazing	700 cow herd, hybrid	1000 cow herd, TMR
Production	L/lactation	6310	6991	7671
	L/cow.d	20.7	22.9	25.2
Dry Matter Intake ¹	kg/cow.d	18.6	19.8	21.1
Volatile Solids excreted1	kg/cow.d	3.8	4.0	4.3
Proportion collected	%	10	25	85
Volatile Solids to pond ^P	kg/d	135	632	3259
Estimated methane yield ³	m ^a CH ₂ /d	29	136	704
	t CO2-e/yr	127	593	3059
Flare only:				
CFI incentive ⁴	S/yr	1903	8891	45886
	\$/cow.yr			45,89
Hot water, flare remainder:				
Hot water electricity offset ⁵	\$/cow.yr	7.34	7.02	6.82
Combined benefit	\$/cow.yr	12.10	19.73	
Combined heat & power:				
Potential electricity yield [#]	kWh/d	83	386	1990
	kW	3	16	83
Purchased electricity offset ⁷	\$/cow.yr	8.18	21.84	43.99
Electrical export revenue ⁸	\$/cow.yr	0.00	0.00	16,12
REC value®	\$/cow.yr	2.20	5.88	21.24
Heat recovery benefit ¹⁰	\$/cow.yr	5.03	7.02	6.82
Combined benefit	S/cow.yr			134.06

Resources

- Approved ERF methods
 <u>http://www.cleanenergyregulator.gov.au/ERF/Forms-and-resources/methods/resources-for-agricultural-methods</u>
- Dairy Shed Effluent and Biogas Frequently Asked Questions <u>http://www.dairyingfortomorrow.com/uploads/documents/Dairy%20Shed</u> %20Effluent%20and%20Biogas_1.pdf
- Is biogas technology right for Australian dairy farms? <u>http://frds.dairyaustralia.com.au/wp-</u> content/uploads/2013/05/FINAL_Biogas-technology_A4-reportsummary.pdf

Scott Birchall, Dairy Australia Consultant, Land, Water & Carbon – Murray region, March 2016

Notes

- 1. Calculated using DGAS
- 2. After allowing 10% VS removal by screen
- Calculated using CFI methodology 'baseline emissions'
 Carbon price @ \$15/t CO2-e, price will vary, benefit excludes energy used to capture and combust biogas
- 5. Electricity cost for water heating @ \$0.10/kWh off-peak, offset limited to estimated hot water requirement
- 6. Electrical generation efficiency @ 30%
- 7. On-site consumption estimated @ 44 kWh/kL, electricity cost averages @ \$0.15/kWh, \$0.02/kWh O&M cost
- 8. Export @ \$0.08/kWh under Victorian standard feed-in tariff (100 kW limit), \$0.02/kWh O&M cost 9. Renewable Energy Certificates valued @ \$35/MWh, price will vary

10. Engine jacket heat recovery only (0.8 kWh/kWh)