

Richard Eckard

Nitrogen Management

All plants need nitrogen (N) for growth "Nitrogen (N) fertiliser can be a useful management tool for manipulating seasonal pasture growth rate, as and when additional forage is needed"

But,

too much nitrogen will increasingly be lost to the environment.

Nitrogen Where does it come from?

It takes about 600 kg N to grow 12 t DM/ha!

THE UNIVERSITY OF

MELBOURNE

Eckard 2004

Eckard 2004

The balance between production and MELBOURNE The balance between production and environment

Stocking rate is however, the single largest determinant of N required and N loss

Legumes

- A source of 'new' nitrogen
- 0 and 250 kg N/ha per year
- Needs >25 30% clover in mix
- Average clover content
 - in Gippsland = 12%?
 - Western Victoria = 8-15 %?
- Temperature
 - N_2 fixation restricted at low soil temp (<10° C)
 - Only available during warmer months
- Most likely only 30 100 kg N/ha per year

- 're-cycled' N
- Sources:

THE UNIVERSITY OF

MELBOURNE

- Decaying grass and legume roots
- Dung and urine
- N content:
 - Most pasture soils contain 6 8 t N/ha in the top 15 cm
 - BUT
 - Only around 1 3% available per year
 - Mineralisation is restricted at low soil temp (<10°C)
 - Only available during the warmer months
 - 50 250 kg N/ha per year from the soil

Nitrogen from Dung and Urine

THE UNIVERSITY OF

MELBOURNE

- 're-cycled' N
- 60 90% of the N in urine is liquid urea
- However, 40 60% of this N can be lost
- A single urine patch
 - Dairy cow = 1000 1300 kg N/ha
 - Beef cow = 300 500 kg N/ha
- BUT
 - Covers entire paddock every 3 6 years

What does N do?

- Essential for protein
- Growth rate
 - 30 150% increase
 - Leaf length and width
 - Plant vigour
 - Cold and stress tolerance
- Root volume
 - Water use efficiency
 - Nutrient uptake

Clover dynamics

Ball & Field 1987

N fertiliser

THE UNIVERSITY OF The concept of strategic N inputs MELBOURNE Perennial ryegrass/white clover

Eckard 2004

BMP for Nitrogen fertiliser

- Rate
- Source

THE UNIVERSITY OF

MELBOURNE

- Timing
- Placement

4 Rs

- Right Rate
- Right Source
- Right Time
- Right Place

Match rate & timing to plant demand

Eckard, Johnson, Chapman (2006)

Nitrogen Efficiency – what is it?

N Efficiency = the slope of the response curve OR = kg 'extra' DM produced/kg N applied

Using an N efficiency of 10:1 as an example:

• If you are short 5 t DM

THE UNIVERSITY OF

MELBOURNE

- 50 kg N/ha @10:1 = 500 kg DM/ha
- Apply 50 kg N to 10 ha

How do you use this?

Average N response – Gippsland (kgDM/kgN)												
Pasture potential	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Low	7	3	4	7	5	5	6	8	9	9	8	7
Medium	8	4	6	10	9	7	10	13	16	13	12	9
High	9	5	8	14	12	10	15	18	22	18	16	12

Nitrogen Rate

- Depends on additional growth required:
 - e.g.

THE UNIVERSITY OF

MELBOURNE

- -25 kg N => 8 20 kg DM/ha.day more
- -50 kg N => 16 40 kg DM/ha.day more
- So it follows that (at 10:1):
 - -25 kg N/ha on 100 ha = 50 kg N/ha on 50 ha BUT
 - 40 kg/ha on 100 ha > 80 kg/ha on 50 ha
- ALSO
 - N over the whole farm is 7 10% less efficient than following the cows

Nitrogen Timing

Nitrogen Source

- No difference between sources in yield
 - As long as the same N rate is applied
 - N losses do differ
- Urea (46% N)
 - Cheapest 'pure' N source

THE UNIVERSITY OF

MELBOURNE

- Ammonia Losses <10% (May-Nov)
- Summer losses may be 14 20 %
- DAP (18%)
 - Cheapest 'mixed' N source
 - Top up with Urea

Nitrogen Source - losses

Enhance Efficiency Fertilisers

- Nitrification inhibitors
 - DMPP

THE UNIVERSITY OF

MELBOURNE

- Entec (3,4-dimethyl pyrazole phosphate)
- Nitrapyrin
 - eNTrench (liquid)
- DCD (?)
 - Eco-N (Dicyanciamide)
- Urease inhibitor
 - Agrotain
 - Green urea (NBPT)
- Polymer Coated Urea (PCU)
- Not cost-effective in grazing systems?

Nitrogen losses

Ammonia Losses from Urea

- Comes back down in rain
 - 5 to 8 kg N/ha from deposition
 - But can form N_2O
- Autumn break to Nov
 - 3 to 6% of Urea-N lost
 - No specific management needed
- Summer months

THE UNIVERSITY OF

MELBOURNE

- 6 to 14% of urea N lost
- 25% max recorded in Gippsland
- Urea still cheapest N source
- DAP & AN minimal loss

Ammonia Loss Grazing Management

Ammonia Volatilisation Summer Rainfall or Irrigation

50 kg Urea-N applied in Feb:

No Rain: 0 –13% loss

THE UNIVERSITY OF

MELBOURNE

- Rainfall within 24hrs of N:
 - 5 mm: 7 10 % loss
 - 20 mm: 0 1% loss
- Rainfall 24 hrs before N:
 - 20 mm: 7 21% loss

Eckard et al. 2008

THE UNIVERSITY OF
MELBOURNENitrate Leaching

- Free draining soils lose more nitrate
- Impacts accumulate over years
 <10 kg N/ha through to >40 kg N/ha

Denitrification

- Warm and waterlogged soils
- Actual losses are low
 1 to 5% of N applied
- BUT

Nitrous oxide is a powerful greenhouse gas

 310 times to GWP of carbon dioxide

Denitrification

• Higher denitrification with higher N and stocking rate

Eckard et al. 2003

Animal Health Effects

Animal Health

- Nitrate Toxicity
 - Annual ryegrass
 - Capeweed
 - Brassicas

NOT

- Perennial ryegrass
- Clover

• Ammonia toxicity/bloat

- sad-cow syndrome
- 'belly-ache'
- Urine scalds /ammonia smell

In Summary

- N fertiliser can be a useful management tool
- Only apply N when pasture is actively growing
 No closer than 28 days apart
- Apply Urea or DAP between 25 and 50 kg N/ha
 - The N rate depends on the extra growth rate required
- Avoid high rates of N on wet soils
- Stocking rate is the biggest influence on
 - N input demand
 - N loss to the environment

