Efficient farming & Carbon footprint

Tasmanian Dairy Conference Tony Fransen 18 March 2021

Getting the Balance Right

1. Farm System

Good Farm Practice

- 1. Benchmark and track your performance
 - Plan, Do, Review
- 2. Farm for profitability not production
- 3. Ensure resource use (water, energy, fertiliser, feed) is focused on maximising profitability

Good Farm Practice

4. Breed animals that optimise profitability

- Good reproductive performance
- Efficient production (Kg MS/Kg Liveweight)
- High longevity

5. Be ready to showcase your farm every day

Australian dairy farm emissions

AGRICULTURAL GREENHOUSE GAS Research Centre

Lowering Emissions

NZ regulations to reduce gross biogenic methane emissions below 2017 level by:

- 10% by 2030
- 24-47% by 2050

All other Greenhouse gases to net zero by 2050.

Australian industry goal of reducing emissions intensity by 30% by 2030

National Average Emissions

Carbon footprint of milk production

Carbon Footprint (kg CO₂e per kg FPCM)

AgResearch Report 2021

Tasmanian dairy farm emissions

Dairy Farm System

Lincoln University Dairy Farm

Current System

Previous System

Dairy 8.0.2.11 Total CO₂ Equivalent (kg/Total ha) Total CO₂ Equivalent (kg/Total ha) ~ 0.65 kgCO₂e/kg FPCM ~ 0.71 kgCO₂e/kg FPCM 2000 4000 6000 8000 10000120001400 2000 4000 6000 8000 10000 12000 2000 1800 12,899 14,701 1800 1600 1600 1400 1400 1200 00^1 00 9738 from Methane 10662 from Methane 00 00 00 00 3585 from Nitrous oxide 00 2897 from Nitrous oxide 00 00 -264 from Urea hydrolysis 454 from Urea hydrolysis 00 2000 4000 6000 8000 1000012000 2000 4000 6000 8000 10000 12000 ASONDJEMAM ASONDJFMAM

- 1. Fewer, higher producing cows
- 2. Reduced N fertiliser & Imported feed
- 3. Improved pasture management

Low input, efficient systems have potential to maintain production while reducing losses to water & air

2. Genetics

HoofPrint®

Environmental Efficiency

Footprint per product (e.g. Kg N/Kg MS)

Production per cow (Kg MS/cow)

Total Environmental Footprint

Footprint per cow (e.g. Kg N/cow)

Total Milk Production

Total Cow Population

ALIC[®]

Copyright © LIC

HoofPrint[®] Model

Individual Animal Output

Milk production Urinary Nitrogen Greenhouse gas emissions (Methane)

There's always room for improvement

Copyright © LIC

HoofPrint[®] – 10 point scale

Lifetime enteric methane per lifetime milksolid produced.

Lifetime urinary nitrogen per lifetime milksolid produced.

Quantifying enteric methane

3W

Lifetime emissions per FPCM related to BW 0 Lifetime Emissions per FPCM (Kg CO2e/Kg FPCM) <u>б</u> 0.0 0.7 0.6 9.9 -400 -200 0 200 400 Breeding Worth - BW (LIC SSAM - 12 Feb 2021)

For every \$10BW increase ~2.0g less methane per Kg of milksolid is produced.

Premier Sires[®] Daughter Proven Team - Methane

A 13% reduction in methane per Kg of milksolid over 30 years from genetics

Liveweight & Energy

Lifetime enteric methane per Kg MS related to Liveweight BV

There's always room for improvement

Copyright © LIC

Enduring Cows

Increasing the herd average number of lactations from 4 to 5 can:

- Reduce urinary nitrogen per Kg milk solid by 5.2%
- Reduce methane per Kg milk solid by 4.5%

Through:

- Lower replacement rate
- Higher production

3. Further Research

Possible Ag Emissions Reductions

Figure 7: An example of the cumulative effects for a future package of interventions for dairy, sheep and beef

Note: These numbers are based on the most ambitious assumptions about the mitigation potential relating to different options, and farmer uptake of these options.

From: Report of the Biological Emissions Reference Group (BERG), (2018)

Young Bull Methane Project

Resilient Dairy

Innovative breeding for a sustainable dairy future

Livestock Improvement Corporation Ltd, DairyNZ Ltd and the Ministry for Primary Industries

Thank you 😳

- 1. Benchmark and track your performance
- 2. Farm for profitability not production
- 3. Ensure resource use (water, energy, fertiliser, feed) is focused on maximising profitability
- 4. Breed animals that optimise profitability
- 5. Be ready to showcase your farm every day

There's always room for improvement

Tony Fransen Environment & Welfare Manager tony.fransen@lic.co.nz

